Wpis z mikrobloga

@tyrytyty:
Nie wyobrażam sobie dowodu.
A umiesz wskazać D dla dowolnej funkcji?
To ja poproszę dla tej: ( ͡° ͜ʖ ͡°)
Niech xRy ⇔ x-y∈Q.
Z lematu wyboru dla klas abstrakcji R wybieramy reprezentantów ai.
Niech f(ai+p/q):=q
@tyrytyty:

It is a theorem due to Blumberg (New Properties of All Real Functions - Trans. AMS (1922)) and a topological space X

such that every real valued function admits a dense set on which it is continuous is sometimes called a Blumberg space.

Moreover, in Bredford & Goffman, Metric Spaces in which Blumberg's Theorem Holds, Proc. AMS (1960) you can find the proof that a metric space is Blumberg iff